Hands-on experimental and computer laboratory in optics The Young Double Slit Experiment

A. Ammar^{*}, H. Ghalila, Y. Majdi, S. Lahmar, Z Dhaoudi, M. Zghal, Zohra Ben Lakhdar, V. Lakshminarayanan^{*}

Optical Society of Tunisia & LSAMA Lab, Faculty of Sciences of Tunis

August 22, 2018

A. Ammar*, H. Ghalila, Y. Majdi, S. Lahmar, Z DhaouHands-on experimental and computer laboratory in opt

Teaching has not changed over the centuries!

Figure: Henry of Germany lecturing at the University of Bologna. Painting by Laurentius de Voltolina (1350).

Active learning cycle

Teacher has to change the classical and usually passive way of teaching to one favoring Predictions, Observations, Discussions and Syntheses (PODS).

Learning through experimentation

Active Learning in Optics and Photonics (ALOP) UNESCO's programme is the best example for this concept that provide a set of experiments to understand optics and photonics.

Learning through simulation

ALOP does not contain computations or simulations. "Active learning" and "Optics simulations" together may be joined as "Active Learning in Simulating Optics" (ALSO). Our goal is to encourage teachers and students to take an active part in developing their own codes as they design individual own experiments.

Active Learning in Simulating Optics (ALSO)

Some of the criteria for a good computer simulation for classroom use

Some of the criteria that are relevant for learning via simulation include:

- The simulations should be true to life.
- The simulations should be "hand-on," involving the students so that the students become participants in the simulation activity.
- Simulations should **motivate learning**. Student involvement in the activity should be such they are motivated to learn more about the activity or the subject matter.
- Simulations should be **customizable** to the students' needs.
- Simulations are meant to supplement, not replace other teaching modes. Integrating simulations into the curriculum also ensures that connections to domain knowledge and real-world applications are made explicit.
- Computer simulations should be chosen to meet the **teaching objectives** and **teach the content**.

・ロト ・ 同ト ・ ヨト

Optics simulation with Python

What is Python?

Python is a modern, general-purpose, object oriented, high-level programming language.

- Clean and simple language: Easy-to-read and intuitive code, easy-to-learn minimalistic syntax, maintainability scales well with size of projects.
- Expressive language: Fewer lines of code, fewer bugs, easier to maintain.
- **Powerful Python packages:** open source pre-built and tested scientific and analytic Python packages that include NumPy, Pandas, SciPy, Matplotlib...
- An easy way to install Python and its packages: Anaconda is a cross platform Python distribution and easy-to-install free package and environment manager.

Example: The Young Double Slit Experiment

ALOP, Zimbabwe, July 2018

Observation

Figure: Measures of the size of the main central peak of diffraction ΔS , the size of the small spot du to the interferences Δs and enumeration of the number of interference peak inside the main peak of diffraction

Numerical modeling

Analytical expression

 $I(x) = sinc^{2}(Bx)[1 + cos(2Ax)]$ where $: A = \pi a/\lambda D$ and $B = \pi b/\lambda D$

b stands for the width of the slits, *a* represents the distance between slits, *D* is the distance of the screen to the plan of the slits and λ is the wavelength of the monochromatic incident light.

The values of ΔS and Δs are determined theoretically from b and a :

 $\Delta S = 2\lambda D/b$ and $\Delta s = \lambda D/a$

A. Ammar*, H. Ghalila, Y. Majdi, S. Lahmar, Z DhaouHands-on experimental and computer laboratory in opt

Python application

Clone or download the code source from GitHub:

https://astrax.github.io/ETOP_2018/

A. Ammar*, H. Ghalila, Y. Majdi, S. Lahmar, Z DhaouHands-on experimental and computer laboratory in opt

э August 22, 2018 9/11

590

New published text book

More than 50 programs and applications are free to download on the book's web page:

www.crcpress.com/9781498755047

Thank you!

A. Ammar*, H. Ghalila, Y. Majdi, S. Lahmar, Z DhaouHands-on experimental and computer laboratory in opt

590

< ロ > < 回 > < 回 > < 回 > < 回 >